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A qualitative ~nvestiK&tion was carried out of a cylindrical phase space 
for one piecewise linear system which is of interest in applications. In 
particular, an existence of a semistable limit cycle encompassing the 
cylinder was established. Obtained are analytic expressions for all bi- 
furcate surfaces dividing the parameter space into regions of equal 
qualitative structure. 

1. Statement of problem. 'The equation 

where F(x) is a periodic function with period Zn, results from a con- 
sideration of a numher of electromechanical and mechanical systems 
(alternating current synchronous machines, automatic control systems, 
pendulum theory, etc.). This equation has been considered with various 
approximations of the function F(z). ‘Ihe conditions for generation of a 
limit cycle from a separatrix passing from a saddle to saddle for piece- 
wise linear approximation of F(x) and a > 0, @ < 1 are found in [l 1. 
Reference [ 2 1 gives, for sinusoidal approximation of F(x) and a > 0 
/3 30, a qualitative investigation of the equation and evaluates loca- 
tions of the bifurcate surface for the separatrix passing from a saddle 
to saddle in the parameter space. Voluminous literature is devoted to 
the particular case /3 = 0 (see for example [3-8 I). 

A qualitative investigation and analytic expressions for all bifur- 
cate surfaces are given in the proposed work for piecewise linear 
approximation of the function F(x) and arbitrary values of ci and /3. 
Assuming 

F(2) =+CC for -$-<X<$, F(T)=---$X+2 for 5 -< x Q 2; 
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and introducing new variables and parameters we obtain a system of the 

tYPc! 

dx 
dt = Y, ““=-_z 

dt - 2hly + a for - % < x Q 3 (1-l) 
dx -= 
& YY 

(fY 
-= clt 

x - 2h2y - (x - a) (1.2) 

We will consider a cylindrical phase surface of the joint system 
(l.l)-(1.2) developed on part of a surface corresponding to the inequal- 
ities - n/2 < x <3s/‘2. The straight line z = n/2 divides the considered 
surface into regions (1) and (2) in each of which the phase trajectories 
are determined by the linear systems (1.1) and (1.2), respectively. The 
lines x = - n/2 and x = 38/Z are identified in Fig. 1. The joint system 
(l.l)-(1.2) has two states of equilibrium O1(a, 0) and OI1(s - a, 0). The 
point 0, is a simple critical point of the system (1.1). Obviously, 0, 
will be a stable focus for 0 < h, < 1, an unstable one for - 1 < h, < 0, 
and a center for h, = 0, Furthermore, the critical point 0, is a stable 
node for h, > 1, an unstable node for h, < - 1 and a dicritical node for 
1 hl 1 = 1. Point 0, is a simple critical point of the system (1.2). For 
all values of the parameter h,, the point 0, is a saddle whose separa- 
trices are defined by the equations 

y = (- hz + vha* + 1) (z - (a - a)) 

The existence of limit cycles for the 
system (l.l)-(1.2) can be established by 
considering the corresponding point trans- 
formations. Indeed, if a limit cycle exists 
which does not encompass the cylinder, then 
it must contain within itself the point 0, 
and either intersect one line x = s/2 or 
intersect both lines x = n/2 and x = 3~12. 
Thus, in order to determine limit cycles 
not encompassing the cylinder it is neces- 

Fig. 1. sary to consider the point transformation 
of the line x = n/2 into itself, as well as 

a more complicated transformation for the case when the limit cycle in- 
tersects two straight lines. In order to determine limit cycles encom- 
passing the cylinder it is necessary to consider point transformations 
of the lines 31 = - n/2, x = 1r/2 and x = 3s/2 into each other. 

Let us denote by S,, S,, S, (RI, R,, R3) the lines 2: = - n/2, x = ~12, 
x = 3~/2 corresponding to y > 0 (y < 0). Phase trajectories of the 
system (1.1) effect the point transformations of S, into S,, R, into R, 
and R, into S,. Let us denote these transformations, respectively, by 
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L(l), L(l) and I$ . (l) Phase trajectories of the system (1.2) effect the 
point tksformations of S, into S,, R, into R,, Sz into R, and R, into 
S,. These transformations will be denoted, respectively, by Lt2), LL2’, 

$ (2) and lIst2) (Fig. 1). 

Subsequently we will use the following notation: 

Ol=~l-h12 forIhl<l, 01 = Vh12 - 1 for I hl I > 1 

kP$, 02=pGzp, kz =$- 

L&J Sl’ S2’ S3’ ‘1, r2, r3 be the ordinates of the respective straight 
line points; T/G+, r’/ol, O/o,, 9’/02, r2/01, 8,/o,, 9,/o, duration times 
for the describing point (Fig. 1) to pass through the re ions correspond- 
ing to transformations L(l), LL1’, Lf2), LL2), $(l), $ 7 2), I13(2). 

Quantities sl, . . . , r3, as well as r, r ‘, . . . , 8, assume positive or zero 
values. 

Let us derive the equations in parametric form of correspondence func- 
tions (see for example [4, Chapt. 3 I) for each of the indicated trans- 
formations 

Trc7nsfornations L(l) and Li” 

Sl (‘t, h, a) = (+ - u)&& + (t + u) (01 cot z + hl) 

(1.3) 

(1.4) 

(1.5) 

In case 1 h, 1 > 1, the expressions for s1 (T , h,, a), s2 (r , h,, a) and 
derivatives are obtained if on the right-hand sides of the equalities 
(1.3) and (1.5) one substitutes sinh r and coth (r) for sin r and cot r. 
‘Ihe equality (1.4) remains unchanged. 

In cases h, = f 1, one needs to replace T by olr in the equalities 
(1.3) to (1.5) and pass to the limit for h, + f 1. 

It follows from Expression (1.3) and the corresponding phase plot 
that for ( h, ( < 1 the following cases are possible. 

1) If (r/2 - a)e CIV > (w/2 + a), then in order to obtain all possible 



1522 N.A. 

values of sI and s2 the parameter T 
value r = r* < R for which .s2(v*) = 

2) If (7r/2 - a)e k117 = (n/2 + 

3) If (n/2 - a)ek”n < (n/2 + 
s&) > 0. 

In case when the point 0, is 
r should be varied from zero to 

a), then 0 < r Q IT and s,(n) = S*(R) =O. 

a), then 0 < r < r s < R and sl(rO) = 0, 

Gubar’ 

should be varied from zero to some 
0, slff*$ > 0. 

a node, i.e. for f h, 1 > 1, the parameter 
some value 7 = f* 

sz(r*) = 0, sl(r*) > 0 if h, > 0; the parameter r 
some value r,, for which sl(r ,,I = 0, sZ(rO) > 0 if 

>-0 for which 
is varied from zero to 
h, < 0. 

Fig. 2. 

Equations (1.3) and the corresponding equations for 1 h,l IS 1 define 
for the transformation L (I) the correspondence function sI = .sl(sz). For, 
all values of the parameters a and h, the curve s1 = sl(sz) has the 

asymptote 
Sl == S? + 2nh1 (1.G) 

The equalities (1.3) to (1.6) allow one to determine the form of the 
curve s1 = sl(sZ). It is shown in Fig. 2 where 

0 < a < $- , h ;!- i or 0 < hl < i, ($ - n’p= ,.I, ( :t- + a) (Fig. 2a) 

(1 = 0, hl]>O (Fig. 2b) 

‘0 < a < 71 I 2, o<;Al < 1, (n Il2 - u) e kl% < (Jci 2 + n) (Fig. 2~) 

O-<fz<</i, hl < 0 (Fig. 2d) 

(1) The equations for the correspondence function of L_ transformation 

are 
for 

sl’ 
the 

obtained if in the equalities (1.3) and the corresponding equalities 
( h, 1 2 1 one assumes s1 G 0, s2 Q 0, r G 0 and subsequently replace 
sz and r by - rl, - r2, - T’, respectively. It is easy to see that 

following equalities are satisfied: 

r1 (z', hl) = Sl (T', Al), t-2 (r', hl) = 392 (z', --A) (1.7) 
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Transformations Lf2) and LL2) 

s3 (0, h2, a) = (5 ---~)~3 e_JQ + (l + u)(wacothO - ha) 

Sz (0, 122, a) = S3 (9, -42, --a) (1.8) 

rlss 
-_ 
l/S:! 

e-_?h‘*o "- 

53 (1.9) 

d3s3 
Q= 

(1.10) 

It follows from Expressions (1.8) and the corresponding phase plot 
that the parameter 8 should be varied from zero to infinity. Then s2 and 
s3 tend to m for 8 + 0 and 

lim S3 = @C/2 + a) (--ha + 02), lim S2 = (n/2 - a) (hz -102) for r) 400 

Equations (1.8) define the correspondence function s3 = s3(s2) for 
the transformation Lt2). It is easy to see that this function has the 

asymptote 
s3 = s2 - 2nhz (1.11) 

‘Ibe point A[ (h2 + 9) (n/2 - a), (- h, + a21 (n/2 + a)] on the curve 
s3 = s3(s2) corresponds to 8 = 0~. Ihe form of this curve, determined 
with the aid of the equalities (1.8) to (1.111, is shown in Fig. 2: 

O<a <n/2, h2 > 0 or a = 0, 11, > 0 (Fig. 2e) 

u = 0, 112 < 0 Wig. 2f) 

O<n<niZ, h2 < 0 (Fig. 2g) 

(1) By similar reasoning as in the case for L_ transformation we get 
that for the correspondence function of L_ 12) transformation, which is 
defined by the equalities r2 = r,(f3’) and r3 = r,(W), the following re- 
lations are satisfied: 

0 (e’, h2) = S3 (e', --hz), r2 (fJ', hz) = s2 (0', -hz) 

Transform&ion lI,( ‘) 

(1.12) 

sa (z2, hl) = (--&dT~ + 01 cot zz - hl;(n / 2 - a) 

ra (r2, hl) = s2 (ze, 422,) (1.13) 

r/S? 
drp- 

e--?k,T: 2 
s.L (1.14) 

Here 1 h, ( < 1. The parameter r 2 should be varied from R to some value 
r2 = T 2° < 2s for which 
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s2 (Z27 = 0, r-2 (TzO) > 0, if hl>O 
1’2 (ZZO) = 0, s (tz”) > 0 if hl<O 

r2 (zn,O) = 0, s2 (tz") == 0, if hl - 0 

In order to obtain the corresponding formulas for transformations 
l+(2) and lISt2), we introduce the notation 

u(0,h2)= --cm 
i 
sg -cothO 

\i -!- hz, 
2: (0, h2) = a (0, 42) (1.15) 

It is easy to see that u and v tend to zero for 8 + 0 and lim’ 
u = (h2 + w2), lim v = (- fr, + 02) for 6 -, 00 . Furthermore 

du 02 lie -=---_2 c 
4 sinhe ’ 

(1.16) 

du 
dT = 

e??i,o 21 
U 

(1.17) 

It is easy to show that for h, > 0 and h, < 0 the following inequal- 
ities are satisfied respectively; 

One 
h, and 

u (0, h2) - v (6, h4 > 0, zz (0, h2) - 2: (e, he) < 0 (4.18) 

can show also that for all positive values of the quantities h,, 
8 the inequality 

[v2 (0) + 28 (0) hl + 11 eckco > [u2 (0) - 2u (0) hl + 11 (1.19) 

is satisfied. 

i%znsformations n2(2) u&&(2) 

S2 (b) = 2.2. (62) (n / 2 - a), f2 (02) = 21 (02) (n i 2 - a) (1.20) 

S3 (03) = 21 (b) (n I2 + a), p3 (e3) = u (es) (3~ / 2 + a) (1.22) 

All conclusions about correspondence functions and their derivatives 
for transformations l$(2) and lISC2’ follow from Formulas (1.15) to 

(1.181, (1.20) to (1.21). 

2, Limit cycles encompassin 
the complex transformation L = L (‘I,!, P 

the cylinder. Let us consider 
‘), To the immovable points of this 

transformation correspond the limit cycles encompassing the cylinder 
which are located in the upper part of the phase surface y > 0. In order 
to find these immovable points it is necessary to find the intersections 
of the curves s1 = s1(s2) and s3 = S&Q). 

Utilizing the relations (1.4) to (1.61, (1.9) to (1.111, one can 
establish the presence and quantity of the intersections of the CUXTS and the 
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character of the corresponding limit cycles based on the 
ly proved propositions. 

1525 

following easi- 

1. If at all points of intersection the inequality d(sl - s3)/dsz < 
0 (> 0) is satisfied, then there can be no more than one intersection 
which, on the strength of a Koenings theorem ([ 4, Chapt. 5 I), corre- 
sponds to a stable (respectively unstable) limit cycle. 

2. If &sr - s.$/ds,2 < 0 (> 0) for all values of s2 and the differ- 

ence s1 - a3 < 0 (> 0) for sufficiently large values of sz, then there 
can be no more than one point of intersection and this point corresponds 
to the stable (unstable) limit cycle. 

It is easy to see that bifurcations take place for which the points 
of intersection for s1 = s1(s2) and s3 c s3(sZ) appear or disappear: 

a) if point A of curve s3 = 

b) if the asymptotes of the 

c) if the considered curves 

Case [a). Zhe equalities 

Sl (7) = (A2 +w2) (n f 2 

sQ(s2)lies on the curve s1 = sl(s2); 

considered curves coincide; 

are touching. 

+a), sz (z) = (hz + wz) (St / 2 - a> 

must be satisfied where s,(r) and s,(t) are defined by the equalities 
(1.3) for 1 h, 1 < 1 and the corresponding equalities for 1 h,l > 1. 
Eliminating the parameter r and introducing the notation 

b = In ;;;2; (2.1) 

we obtain the following relationship between the parameters a, h, and h, 
for which Case (a) is realized: 

lk,(n- 

I 
-1%) for O<hl<l, hz>O tan. h& , 

J ktan-l :$ for hlh d 0, j hl I < 1 
D (h,, h,) = 

1 

ma2 
- k%di-1-_hlh2 for hlhz < 0, I hx I > 1 

(2*3) 

iikz for hh\<O, hl= + 1 

The values of the parameters a, h, and h,, satisfying the equalities 
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(2.2) to (2.3)‘ will be bifurcate. For these values the separatrix 
passes from saddle to saddle in the upper phase half-plane encompassing 
the cylinder (Fig. 3). Considering the behavior of the curves S, = S,(S?) 

and sg = s3(sZ) one may conclude that - 
for h, > 0 (hz < 0) and with increase 
(decrease) of parameter a or with de- 
crease (increase) of parameter h, in the 
upper phase half-plane the separatrix 
passing from a saddle to saddle generates 
one stable (unstable) limit cycle. 

Case (b). This case is characterized 
by the equality 

h1 + ha = 0 (2.4) 

Fig. 3. 
In this case the limit cycle appears 

from infinity on the phase plane. Namely, 

for values of the parameters a > 0, h, < 0 and a > 0, h, > 0 (a = 0, 

h, > 0) and in passing from the inequality h, + h, < 0 (hl + h, > 0) to 
inequality h, + h, > 0 (h, + h, < 0) there appears from infinity one 
stable (unstable) limit cycle encompassing the cylinder in the upper 
phase half-plane. 

Case (c). It can be shown that this case is realized only for values 
of the parameters h, and h, satisfying the inequalities 

121 > 0, h2 < 0, 111 -+ h2 > 0, h13 - hz2 < 1 (2.5) 

On the strength of the relations (1.4) and (1.9) Case (c) is charac- 
terized by the equalities e 2k1r = e12k2e and sl(r) = s,(0), where sl(r) 

is defined in the same way as in Case (a), while s,(e) is defined by the 
equality (1.8). 

Eliminating parameters 7 and 8 and utilizing the notation (2.1), we 
obtain the relationship between the parameters a, h, and h2: 

b = ICITO - +ln ‘p2 (TO) (2.6) 

where rO > 0 is the root of equation 

exp (--klz / k2) = ‘pl (z) (2.7) 

If h, < 1, then 

91 (9 = 
sin tl + sin Z cos (z - zz) - 1 

z1- z 
7 ‘p2 (.t)= 

cos (z + zz) + 1 



Piccewise linear dynamical systca 1527 

If h, > 1, then 

eT-l-Tl- 1 

while the expressions for c+(r), r1 and 72 will be obtained if in the 
corresponding expressions for the case h, < 1 one substitutes the hyper- 
bolic cosine and arc tangent for the cosine and the arc tangent of the 
same arguments. 

For h, = 1 we get 

b = TO - In q&l (To) 

Here r 0 > 0 is the root of equation exp( - r/K,) = &(r > and 

(2.8) 

91 (4 = 
- k2z + 1 --h,z - (1 + h2) 

+ 1 + k2z ’ 
‘92 (4 = 

--h2z + (1 + hz) 
(2.9) 

One may show that Equation (2.7) possesses one, and only one, nonzero 
root for the values of the parameters h, and h, satisfying conditions 
(2.5) and for these values r&(r) < 1. 

Values of the parameters a, h, and h, 
satisfying the equalities (2.6) to (2.9) 
will be bifurcate. For these values there 
is a double semistable limit cycle in the 
upper phase half-plane encompassing the 
cylinder (Fig. 4). It is easy to see, con- 
sidering the behavior of the curves s - 

s1(s2) and s3 = 3 2 , s (s ) that with the’rn _ 

crease of parameter a or decrease oft para- 
meter h, the semistable limit cycle breaks 
down into two limit cycles of different 
stability and disappears for reverse vari- 
ation of the parameters. 

OR the strength of the equalities (1.7) Fig. 4. 

and (1.13) the conclusions regarding the 
quantity of limit cycles for the half-plane y > 0 and for the values of 
the parameters h, and h, will be valid for the half-plane y < 0 for 
values of the parameters - h, and - h,. It is easy to see that the sta- 
bility of the limit cycles in such a case will interchange. Bifurcate 
values of the parameters will be determined by the equalities (2.2) to 
(2.9) upon reversing the signs of h, and h, in these equalities. 

3. Limit cycles not encompassing the cylinder. Let us con- 
sider the complex transfor~tion IJ, = II~“‘II~(zt. It is defined for the 
case 1 h, f < 1. To the immovable points of this transformation correspond 
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the limit cycles not encompassing the cylinder and intersecting only the 

Fig. 5, 

line x = n/Z. On the strength of the 
relations (1.18) and (1.20) we con- 
clude that the transformation J& can 
have immovable points only for differ- 
ent signs of the parameters h, and h,. 
In order to find the iunovable points 
it is necessary to solve the system 

-+ 
X 

r2 (z2) = f2 (~z), s2 (zz) = sz (02) (3.1) 

(See (1.13) and (1.N)). Utilizing 
the relations (1.13) to (1.17), (1.20), 
as well as the inequality (1.19) and 
the Koenings theorem, it is not 
difficult to prove that the system 
(3.1) can have no more than one solu- 
tion to which.corresponds a stable 

(unstable) limit cycle for h, < 0 (hl > 0). ‘Ihe values of parameters 
satisfying the equality 

and the inequality 

82 (To) > (h2 + w2) (n I 2 - a), 7.2 (zo’) > (-422 + w2) (x / 2 - u) (3.3) 

will be bifurcate. 

Here sz(rO) and r2(r,,‘) are determined from the equations of corre- 

spondence functions for transformations L(l) and LL1’, while r a and r a’ 
are values of the parameters P and r ’ for which sl(r 0) = rl(rO’) = 0. 

When conditions (3.2) and (3.3) are satisfied on the phase plane, the 
separatrix passes from saddle to saddle not encompassing the cylinder 
and intersecting only the line n = n/2 (Fig. 5). One can prove that for 

h, > 0 (hl < 0) the system (3.1) has no solutions if the expression 
F(h,, h,) > 0 (F(h,, h,) < 0). Consequently, there are no such limit 
cycles on the phase plane in these cases. If, however, for h, > 0 
(hr < 0) the expression F(h,, hz) < 0 (F(h,, h,) > 0) and either one or 

both inequalities (3.3) are satisfied, then there is on the phase plane 

a limit cycle of the type considered. 

Such limit cycles may not exist when both conditions of (3.3) are 
violated; however, then there will exist a limit cycle not encompassing 
the cylinder and which intersects both lines x = n/2 and x = - s/2. Such 
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limit cycles evidently are determined b the invnovable points of the 
complex transformation lI = L”‘l$(2’L(’ lISt2’ r and exist only when h, and 
h, have different signs (see (1.18), (1.20), (1.21)). In order to find 
them it is necessary to solve a system of four equations with four un- 
knowns (Fig. 1) 

Sl (z) = 83 (03), s2 (z) = sz (b), r2 (z') = 7.2 (e,), Tl (T') = r3 (e3) 

(see (1.31, (1.7), (l.lS), (1.20) and (1.21)). 

Let point 0, be a focus, i.e. 1 h, 1 < 1, then the last system in both 

cases when h, < 0, h2 > 0 and hl > 0, h, < 0 is reduced after trans- 
formations to the following system of two equations with two unknowns: 

b = $In [u2 (62) + 2U (02) hl + 11 -$n b2(e3) - 2~ (93) hl f II + 

+ ii0 (e,, e3) = 15 (e2, es) (3.4) 

b = $ln Iv2 (02) - 2q e2) hl + 11 -+ 1~2 (es) + 2~ (es) hl + 11 - 

- kd (e2, e3) = F2 (e2, es) 

Here in the case h, < 0, h, > 0 (h, > 0, h, < 0) the first equation 
corresponds to the upper (lower) phase half-plane, while the second one 
corresponds to the lower (upper) phase half-plane; quantities b, u and u 
are determined from (2.1) and (1.15), while the functions r(6),, OS) and 
I’m, 6,) have the following sense: 

-1 T (e2, e3) = tan o+~(~;i,+e;)(e8)l z ‘pl (e2, e3) for q>O (3.5) 

-1 T (e2, es) - n - tan “[“6s~e~ ;a$@! f cp2 (e2, e,) for q < 0 (3.6) 

T’ (ez, e3) = ‘pl (e3, e2) for q (es, e2) > 0 (3.7) 

ZJ (e,, e3) f ‘p2 (e3, e2) for 4 (es9 fl2) < 0 (3.3) 

q (e2, es) = u (e2) 8 (es) - hl [U (e2) - 2, pa)1 - 1 (3.9) 

Utilizing Expressions (1.4), (1.7), (1.17), (1.20) and (1.21) as well 
as the inequality (1.19), one can prove that the system (3.4) possesses 
no more than one solution to which corresponds a stable (unstable) limit 
cycle for values of the parameters h, < 0, h, > 0 (hl > 0, h, < 0). 

Let us establish the conditions for which the system (3.4) has a 
solution. Consider the equations 

2 = E; (es, e3), 2 = F2 (e2, es) (3.10) 
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where the functions F,(8,, 0,) and Fz(tifz, 0,) are determined by the 
equali .ties (3.4) as equations of two families of curves dependent on the 
parameter 8,. ‘Ihe satisfaction of the equality F,(m,0,) - F,(oQ,~,) > 0 

” 

for intersection of curves (3.10) corresponding is a necessary condition 
to the same value of the 
the sufficient condition 
fillment of the equality 
to check the validity of 

parameter 0,. In satisfying the above conditions 
for the intersection of the curves is the ful- 
F,(O, es) - F,(O, 0,) d 0. It is not difficult 
these statements by considering partial deriva- 

tives of the function (3.10) and keeping in mind that in view of (1.19) 
the inequalities aF~~ae~ > aF~/ae~, aF~~~~~ > aF~~ae~ are satisfied for 
all values of 8, and 8,. 

From the above one can conclude: the system (3.10) has no solution if 
the expression Fl(m, m> < 0 for h, < 0, h, > 0 (respectively F1(m , w) > 0 
for h, > 0, h, < 0); if, however 

then the system (3.4) has a unique solution 8, = 8, = = only for a = 0, 
On the phase plane the separatrix passes from saddle to saddle encompass- 
ing the cylinder in the lower as well as the upper phase half-plane 
(Fig. 6). Furthermore, if for h, < 0, h, > 0 

Fl(m, m) < 0, Fl (001 0) -Fz(m,O)>O 

then there exists a bifurcate value of the parameter 8, = 8,* defined by 
the equality 

FI (cm, es*) = Fa (cm, fl3*) (3.1.3) 

such that for all values of the parameter a for which b < Fl(m, @,*) the 
system (3.4) has a solution (the uniqueness of this solution was shown 
above). For values of a satisfying b > F1(w, 0,*) the system (3.4) has 
no solution. Let 

b = FI (co, OS”) (3.14) 

Values of the parameters satisfying (3.13) and (3.14) are bifurcate. 
Indeed, when the values of the parameters satisfy conditions (3.12) to 
(3.14), the separatrix on the phase plane passes from saddle to saddle 
not encompassing the cylinder and intersects both lines x = R/Z, 
%=-n/2 (Fig. 7). F rom this it follows that the limit cycle is gene- 
rated in this case from the separatrix passing from a saddle to saddle 
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Fig. 6. Fig. 7. 

with decreasing parameter a. 

Finally, it is not difficult to show that when the following condi- 
tions are satisfied 

Fl fm, 0) - F2 (cm, 0) > 0 for hI<O? hz>O 

Fl (WY 0) -R (OQ, 0) < 0 for k1>0, ha<0 

there exists in the phase plane a limit cycle not encompassing the 
cylinder and intersecting both lines x = R/Z and x = - 17/2 if parameter 
a fulfills the condition b < F,(8,+, 0) in which 8, = O,* is determined 
from F,(8,*, 0) = F,(0,*, 0). 

When the equality b = F,(B,*, 0) is fulfilled, there exists in the 
phase plane a limit cycle not encompassing the cylinder and touching the 
line x = - n/2. If, however, b > F,f@,*, 01, then there exists in the 
phase plane a limit cycle intersecting only the line n = n/2 (see 
p. 1528). Under the conditions (see (3.12)) 

PI (00, 0) - Fa (oa,O) = 0 

b = + In (ma + h2) (~2 + hr) + 

where z = tan-l w(o2 + M 
- hl(O2 + k2) - 1 

(3.15) 

klz (3.1G) 

Z=sI -tan-1 
Ol(O2 + f4 

k~(or+kd + 1 

for -kt.(oa+kaa)<f 
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the separatrix passes from saddle to saddle in the phase plane and does 
not encompass the cylinder but touches the line x = - n/2 (Fig. 8). 

In the case ( h, 1 2 1 the system (3.4) 
can have a solution only for values of 
the parameters 0, > P, 8, > 8’, where 
8O is determined from the equality 
u(0”) = h, + ol. At the same time the 
expressions q(e2, 0,) and o(8,, 0,) (see 
(3.9)) are positive and the functions 

r (e,, OS) and P ‘(e,, 0,) in (3.4) are 
determined, respectively, by Formulas 
(3.5) and (3.6) if for 1 h, / > 1 on the 
right-hand side of these formulas one 
substitutes tanh-’ for tan -I and for 
1 h, 1 = 1 the sign of tan-l is dropped. 

It can be shown that in the case 

Fig. 8. 

[ h, 1 > 1, the system (3.4) has no solution of the left part of the 
equality 

(3.17) 

is positive (negative) for values h, < 0, h, > 0 (hl > 0, hz < 0). If, 
however, the left part of the equality is negative (positive) for h,<O, 
h, > 0 (hl > 0, h, < 01, then the system (3.4) has a solution when the 
parameter a satisfies the inequality b =G F,(=,C?,*) (see (3.13)) and has 
no solution in the opposite case. ‘lhe bifurcate values of the parameters 
a, h,, h,, for which the separatrix passes from saddle not encompassing 
the cylinder and intersecting both lines x = n/2 and x = - ~12 satisfy, 
as well as for 1 h, / < 1, the equalities (3.13) and (3.14) which have 
been changed as stated above for cases 1 h, 1 > 1 and 1 h, 1 = 1. 

4. Division of phase space. We will consider division of b,, h,, 
h 2 parameter space, into rough regions by bifurcate surfaces where b is 
defined by (2.1). 

From the presented investigation if follows that it is sufficient to 
consider division oftspace for h, > 0. Reflecting the obtained division 
symmetrically with respect to the axis b, we will obtain the division 
of space for values of h, < 0. At the same time all cycles of the system 
corresponding to the reflected point of space will attain opposite sta- 
bility and, if to the point (hlo, h,‘, b”) there corresponds a system 
having a limit cycle encompassing the cylinder in the upper (lower) 
phase half-plane, then to the reflected point (- hlo - h,O - b”) there 
will correspond a system having a limit cycle encompassing the cylinder 



Piecewise linear dynamical system 1533 

in the lower (respectively upper) phase half-plane. 

Part of the space h, > 0 is divided into rough regions by the bi- 
furcate surfaces 1, l’j 2, 3, 4. 

The surfaces 1 and 1’ correspond to the appearance of limit cycles 
from a separatrix passing from saddle to saddle and encompassing the 
cylinder in the upper, respectively, lower phase half-planes. 

The surfaces 2, 3 and 4 correspond to the appearance of limit cycles, 
respectively, from infinity, from compression of trajectories, and from 
the separatrix passing from saddle to saddle and not encompassing the 
cylinder. 

‘Ihe surface 1 is defined by the equalities (2,21, (2.3) and is inter- 
sected by the planes h, = 0 and h, = 0 along the lines rl and rz and the 
plane b = 0 along K. The equation of this line is given by the equal- 
ities (3.11) and (3.17). 

The surface 1’ is sytanetric to the surface 1 with respect to the axis 
b,and intersects with it along the line K, while it intersects the plane 
h, = 0 along rr’ sytnnetric to rl, with respect to the axis b. 

‘Ihe surface 2 is a bisectional surface (see (2.4)). 

‘Ihe surface 3 is defined by the equalities (2.6) to (2.9). To its 
points correspond the systems having a double semistable limit cycle. It 
is not difficult to show that the surface 3 intersects the plane b = 0 
along the bisectrix h, + h, = 0, that it is located below the surface 1 
and contacts the surface 1 along the line I’,, which is its intersection 
with surface h, = 0. It can be shown also that the value of b, deter- 
mined from the equations for surfaces 1 and 3, tends to infinity on the 
hyperbola h12 - h22 = 1. 

‘Ihe surface 4 consists of two parts which are in contact with each 
other along the line C , defined by the equalities (3.151, (3.16). One 
part of the surface 4 !s projected into the region of plane b = 0, 
bounded between the line K and the line C which is a projection of line 
C, on the plane b = 0. ‘Ihe second part is located above the line C* and 
is projected into the line C, i.e. it coincides with the cylindrical 
surface F(h,, h,) = 0 ( see (3.2) and (3.15) 1. To the points of the first 
(second) part of surface 4 correspond systems whose separatrices are 
shown located in Fig. 7 (Fig. 5). 

‘Ihe location of separatrices of systems corresponding to points on 
line C, is shown in Fig. 8. 

The surface 4 intersects with the surfaces i and 1’ and the plane 



1534 N.A. &bar’ 

b = 0 along the line K. To the points of this line correspond systems 
the location of whose separatrices is shown in Fig. 6. 

The above-considered surfaces divide part of the space h, > 0 into 
seven regions. We will indicate the boundaries of each region, the 
number and the character of system cycles corresponding to the points of 
a given region. 

Region (I) is bounded by part of plane h, = 0 below line rll by part 
of plane b = 0 located between axis h, = 0 and line h, + h, = 0, and by 
the planes 1 and 3 (there are no limit cycles). 

Region (2) is bounded by part of plane h, = 0 above line l”l and by 
the surfaces I and 2 (one stable limit cycle encompassing the cylinder 
in the upper half-plane). 

Region (3) is bounded by the surfaces 2, 2 
different stability encompassing the cylinder 
plane). 

and 3 (two limit cycles of 
in the upper phase half- 

Region (4) is bounded by the surfaces 2, 2 and part of the plane b=O 
located between the line h, + h, = 0 and line K (one unstable limit 

cycle encompassing the cylinder in the upper phase half-plane, and one 
unstable limit cycle encompassing the cylinder in the lower phase half- 
plane). 

Region (5) is bounded by the surfaces I, 2 and 4 (one unstable limit 
cycle encompassing the cylinder in the lower phase half-plane). 

Region (6) is bounded by the surfaces 1’, 4 and by a part of plane 
h, = 0 above line rl’ (one unstable limit cycle encompassing the cylinder 
in the lower phase half-plane, and one unstable limit cycle not encom- 

passing the cylinder). 

Region (7) is bounded by a 
part of the plane h, = 0 below 
line rlc, by part of plane b= 0 
located between the axis h, = 0 r (6) 
and line K, and by the surface 
1’ (one unstable limit cycle not 

~~,~~~~~ 

encompassing the cylinder). (c) ‘? h, (b) .h, hz 

Schematic location of the 
above-enumerated regions is 

Fig. 9. 

shown in Fig. 9a (0 < h, < const < 1) and in Fig. 9b (hl = const > I). 
I am indebted to L.N. Reliustina for bringing to my attention the problem 
of phase automatic frequency control. 
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